Typing articles catalog



Speech recognition technology

In terms of technology, most of the technical text books nowadays emphasize the use of Hidden Markov Model as the underlying technology. The dynamic programming approach, the neural network-based approach and the knowledge-based learning approach have been studied intensively in the 1980s and 1990s.

Performance of speech recognition systems

The performance of a speech recognition systems is usually specified in terms of accuracy and speed. Accuracy is measured with the word error rate, whereas speed is measured with the real time factor.

Most speech recognition users would tend to agree that dictation machines can achieve very high performance in controlled conditions. Part of the confusion mainly comes from the mixed usage of the term speech recognition and dictation.

Speaker-dependent dictation systems requiring a short period of training can capture continuous speech with a large vocabulary at normal pace with a very high accuracy. Most commercial companies claim that recognition software can achieve between 98% to 99% accuracy (getting one to two words out of one hundred wrong) if operated under optimal conditions. These optimal conditions usually means the test subjects have 1) matching speaker characteristics with the training data, 2) proper speaker adaptation, and 3) clean environment (e.g. office space). (This explains why some users, especially accented, might actually find that the recognition rate could be perceptually much lower than the expected 98% to 99%).

Other, limited vocabulary, systems requiring no training can recognize a small number of words (for instance, the ten digits) from most speakers. Such systems are popular for routing incoming phone calls to their destinations in large organizations.

Noisy channel formulation of statistical speech recognition

Many modern approaches such as HMM-based and ANN-based speech recognition are based on noisy channel formulation (See also Alternative formulation of speech recognition). In that view, the task of a speech recognition system is to search for the most likely word sequence given the acoustic signal. In other words, the system is searching for the most likely word sequence among all possible word sequences W * from the acoustic signal A (what some will call the observation sequence according to the Hidden Markov Model terminology).

Based on Bayes` rule, the above formulation could be rewritten as

Because the acoustic signal is common regardless of which word sequence chosen, the above could be usually simplified to

The term is generally called acoustic model. The term is generally known as language model.

Both acoustic modeling and language modeling are important studies in modern statistical speech recognition. In this entry, we will focus on explaining the use of hidden Markov model (HMM) because notably it is very widely used in many systems. ( Language modeling has many other applications such as smart keyboard and document classification; please refer to the corresponding entries.)

Approaches of statistical speech recognition

Hidden Markov model (HMM)-based speech recognition

Modern general-purpose speech recognition systems are generally based on hidden Markov models (HMMs). This is a statistical model which outputs a sequence of symbols or quantities.

One possible reason why HMMs are used in speech recognition is that a speech signal could be viewed as a piece-wise stationary signal or a short-time stationary signal. That is, one could assume in a short-time in the range of 10 milliseconds, speech could be approximated as a stationary process. Speech could thus be thought as a Markov model for many stochastic processes (known as states).

Another reason why HMMs are popular is because they can be trained automatically and are simple and computationally feasible to use. In speech recognition, to give the very simplest setup possible, the hidden Markov model would output a sequence of n-dimensional real-valued vectors with n around, say, 13, outputting one of these every 10 milliseconds. The vectors, again in the very simplest case, would consist of cepstral coefficients, which are obtained by taking a Fourier transform of a short-time window of speech and decorrelating the spectrum using a cosine transform, then taking the first (most significant) coefficients. The hidden Markov model will tend to have, in each state, a statistical distribution called a mixture of diagonal covariance Gaussians which will give a likelihood for each observed vector. Each word, or (for more general speech recognition systems), each phoneme, will have a different output distribution; a hidden Markov model for a sequence of words or phonemes is mad e by concatenating the individual trained hidden Markov models for the separate words and phonemes.

This article or section may require cleanup to meet Wikipedia`s quality standards.

Please help improve this article or replace this tag with a more specific message. This article has been tagged since December 2005. ( help, talk)

The above is a very brief introduction to some of the more central aspects of speech recognition. Modern speech recognition systems use a host of standard techniques which it would be too time consuming to properly explain, but just to give a flavor, a typical large-vocabulary continuous system would probably have the following parts. It would need context dependency for the phones (so phones with different left and right context have different realizations); to handle unseen contexts it would need tree clustering of the contexts; it would of course use cepstral normalization to normalize for different recording conditions and depending on the length of time that the system had to adapt on different speakers and conditions it might use cepstral mean and variance normalization for channel differences, vocal tract length normalization (VTLN) for male-female normalization and maximum likelihood linear regression (MLLR) for more general speaker adaptation. The features would have delta and delta-delta coeffici ents to capture speech dynamics and in addition might use heteroscedastic linear discriminant analysis (HLDA); or might skip the delta and delta-delta coefficients and use LDA followed perhaps by heteroscedastic linear discriminant analysis or a global semitied covariance transform (also known as maximum likelihood linear transform (MLLT)). A serious company with a large amount of training data would probably want to consider discriminative training techniques like maximum mutual information (MMI), MPE, or (for short utterances) MCE, and if a large amount of speaker-specific enrollment data was available a more wholesale speaker adaptation could be done using MAP or, at least, tree-based maximum likelihood linear regression. Decoding of the speech (the term for what happens when the system is presented with a new utterance and must compute the most likely source sentence) would probably use the Viterbi algorithm to find the best path, but there is a choice between dynamically creating combination hidden Markov models which includes both the acoustic and language model information, or combining it statically beforehand (the AT&T approach, for which their FSM toolkit might be useful). Those who value their sanity might consider the AT&T approach, but be warned that it is memory hungry.

Neural network-based speech recognition

This article or section may require cleanup to meet Wikipedia`s quality standards.

Please help improve this article or replace this tag with a more specific message. This article has been tagged since December 2005. ( help, talk)

Another approach in acoustic modeling is the use of neural networks. They are capable of solving much more complicated recognition tasks, but do not scale as well as HMMs when it comes to large vocabularies. Rather than being used in general-purpose speech recognition applications they can handle low quality, noisy data and speaker independence. Such systems can achieve greater accuracy than HMM based systems, as long as there is training data and the vocabulary is limited. A more general approach using neural networks is phoneme recognition. This is an active field of research, but generally the results are better than for HMMs. There are also NN-HMM hybrid systems that use the neural network part for phoneme recognition and the hidden markov model part for language modeling.

Dynamic time warping (DTW)-based speech recognition

Main article: Dynamic time warping

Dynamic time warping is an algorithm for measuring similarity between two sequences which may vary in time or speed. For instance, similarities in walking patterns would be detected, even if in one video the person was walking slowly and if in another they were walking more quickly, or even if there were accelerations and decelerations during the course of one observation. DTW has been applied to video, audio, and graphics -- indeed, any data which can be turned into a linear representation can be analysized with DTW.

A well known application has been automatic speech recognition, to cope with different speaking speeds. In general, it is a method that allows a computer to find an optimal match between two given sequences (e.g. time series) with certain restrictions, i.e. the sequences are "warped" non-linearly to match each other. This sequence alignment method is often used in the context of hidden Markov models.

Knowledge-based speech recognition

This method uses a stored data base of commands that compares simple words with ones in the data base.

For further information

Popular speech recognition conferences held each year or two include ICASSP, Eurospeech/ICSLP (now named Interspeech) and the IEEE ASRU. Conferences in the field of Natural Language Processing, such as ACL, NAACL, EMNLP, and HLT, are beginning to include papers on speech processing. Important journals include the IEEE Transactions on Speech and Audio Processing (now named IEEE Transactions on Audio, Speech and Language Processing), Computer Speech and Language, and Speech Communication. Books like "Fundamentals of Speech Recognition" by Lawrence Rabiner can be useful to acquire basic knowledge but may not be fully up to date (1993). Another good source can be "Statistical Methods for Speech Recognition" by Frederick Jelinek which is a more up to date book (1998). Keep an eye on government sponsored competitions such as those organised by DARPA (the telephone speech evaluation was most recently known as Rich Transcription). In terms of freely available resources, the HTK book ( and the accompanying HTK toolkit) is one place to start to both learn about speech recognition and to start experimenting (if you are very brave). You could also search for Carnegie Mellon University`s SPHINX toolkit.

Applications of speech recognition

  • Command recognition - Voice user interface with the computer
  • Dictation
  • Interactive Voice Response
  • Automotive speech recognition
  • Medical Transcription
  • Pronunciation Teaching in computer-aided language learning applications
  • Automatic Translation

See also

  • Guided Speech IVR
  • Speech processing
  • Audio visual speech recognition
  • Speech verification
  • Speaker identification
  • Speech synthesis
  • Speech Analytics
  • Keyword spotting
  • VoiceXML
  • Macfarlane`s Law - the conflict between typing and reading speed anticipated the importance of speech recognition


  • "Survey of the State of the Art in Human Language Technology (1997) by Ron Cole et all"


  • Multilingual Speech Processing, Edited by Tanja Schultz and Katrin Kirchhoff, April 2006--Researchers and developers in industry and academia with different backgrounds but a common interest in multilingual speech processing will find an excellent overview of research problems and solutions detailed from theoretical and practical perspectives.---CH 1: Introduction / CH 2: Language Characteristics / CH 3: Linguistic Data Resources / CH 4: Multilingual Acoustic Modeling / CH 5: Multilingual Dictionaries / CH 6: Multilingual Language Modeling / CH 7: Multilingual Speech Synthesis / CH 8: Automatic Language Identification / CH 9: Other Challenges /

External links

  • NIST Speech Group
  • Sphinx Open Source Speech Recognition Engine
  • Entropic/Cambridge Hidden Markov Model Toolkit
  • Julius Open Source Speech Recognition Engine
  • The SPRACHcore software package
  • Open CV library, especially the multi-stream speech and vision combination programs
  • Xvoice: Speech control of X applications
  • LT-World: Portal to information and resources on the internet
  • LDC The Linguistic Data Consortium
  • Evaluations and Language resources Distribution Agency
  • OLAC Open Language Archives Community
  • BAS Bavarian Archive for Speech Signals
  • VoxForge - Free GPL Speech Corpus and Acoustic Model repository

My life with furniture - by Cathy Goodwin, Ph.D.


This article may be reprinted or reposted in its entirety if you also include my resource box.

Every so often I think of writing a Back to School article. However, I now live in a warm climate, The weather feels like a lazy summer school, not a serious winter term. No need to lay in a supply of sweaters and sweatshirts.

But the real reason is that, increasingly, the lines are blurred between school and Real Life. These days, student life often means spending a cozy evening with your computer, e-mailing your classmates and posting your assignments to a website. You might be catching a class on weekends, evenings or two-week learning modules.

Even traditional campus life is designed for grown-ups. Two years ago, the New York Times Magazine carried a story about life in the New Dorms. Apparently some upscale schools are decorating the dorms to look like yuppie condominiums, complete with carpeting and what the Times calls "adult-sized refrigerators."

Meanwhile, a lot of grown-ups who are old enough to remember typing their term papers are still living like students. Books, magazines and loose stacks of paper are strewn everywhere.

Books call for bookshelves. A Real Student secretly misses the bricks and boards, although today the bricks and boards cost more than particle board shelves and are impossible to move.

When I lived in Alaska, I realized there was no point in buying Real Furniture. You could equip a ten-room house for the cost of shipping the contents of a studio apartment to the Lower 48. I ended up buying a couch from a graduating student and added an extra futon to the Bedroom Set. When I moved to my next job, I fully intended to do the same until a colleague asked me, "Isn?t there a time in your life when you stop buying used couches from students?"

A friend told me she had a similar experience when she visited a Real Furniture Store, seeking bookshelves. The salesperson showed her a nice unit for $450. Seeing that my friend was about to pass out, the salesperson explained, "This is a piece of furniture that you will be proud to display in your home."

My friend left the store in a daze. Somehow, she explained later, she had never thought of bookshelves as furniture.

I?d like to think we?re all grown up now, but it?s hard. For one thing, many professions encourage us to live like a student with five term papers due at the end of the term and no graduation in sight. If you?re writing a book, teaching a seminar, preparing for a court case, coaching a sports team or putting together a sales presentation, there?s always something more you could be doing, twenty-four hours a day, seven days a week. People who have the souls of Real Students seem attracted to those jobs.

Still, I see progress. A friend called to say he bought a house because he was tired of living like a student and was ready to grow up. He was forty-five at the time.

I myself have acquired some Real Furniture, including the Beautiful New Couch I bought eight years ago, although I still insist that sleeping on a few layers of futons is healthier than a conventional bedroom set. Thanks to my lawn service person, who is a student, I have a real, grown-up yard. Recently, while walking the dog, I met a young student who had transformed her rental cottage into a home worthy of House Beautiful. I suggested she moonlight as a decorator to help those who have graduated and finally decided to become adults.

We will never succeed completely. My friend with the house just called to say that his two cats have shredded most of the trappings of his adult life. I understand perfectly. My Beautiful New Couch has served as a place for me, my house-sitters and my guests to take naps, and the cats have carried out extensive performance tests on each cushion.

The moving companies see a couch as a challenge to their insurance guidelines. I haven?t been a student but the couch has gone through a reverse graduation: it looks far more exhausted than its predecessor


the couch I bought, ten years ago, from a student.

Cathy Goodwin, Ph.D. author, coach, speaker

Helps mid-career professionals move to career freedom

Nine Magic Keys to Career Freedom


Career Freedom Ezine mailto:subscribe@movinglady.com

emai: cathy@movinglady.com

Typing articles index